Turn over for the next question

[1 mark]

	2
U	

The algorithms shown in Figure 4 and Figure 5 both have the same purpose.

The operator LEFTSHIFT performs a binary shift to the left by the number indicated.

For example, 6 LEFTSHIFT 1 will left shift the number 6 by one place, which has the effect of multiplying the number 6 by two giving a result of 12

Figure 4

```
result ← number LEFTSHIFT 2
result ← result - number
```

Figure 5

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

0 2 . 1

Complete the trace table for the algorithm shown in **Figure 4** when the initial value of number is 4

You may not need to use all rows of the trace table.

[2 marks]

result

PhysicsAndMathsTutor.com						
7						

0 3 Add together the following three binary numbers and give your answer in binary:

3.4 Binary Arithmetic

01110101 00100100 +00010001

[2 marks]

0	4	. 1	Add together the following three binary numbers and give your answer in binary.

[2 marks]

0 4.2 State the result, in binary, of performing a binary shift two places to the left on the binary value 00111001

[1 mark]

	,	(1		1	(1
	,	1 '	1 '	1	i	1 '	1
- 1	,		1 '	1	i		1 '
	,	1 '	1 '	1	i	1 '	1
	,	1 '	1 '	1	i	1 '	1
	,		1	1	i		1
		1	1			1	

Turn over for the next question

0 5.1 Add together the following three binary numbers and give your answer in binary. [2 marks]

0 5.2	Apply a binary shift three places to the right on the bit pattern 10101000							
	Give the result using 8 bits. [1 mark]							
	The arithmetic effect of applying a left binary shift of two to a binary number is to multiply that number by four.							
0 5.3	State the arithmetic effect of applying a left binary shift of four to a binary number. [1 mark]							
0 5.4	State the arithmetic effect of applying a left binary shift of three followed by a right binary shift of five to a binary number. [1 mark]							

Turn over for the next question

0 6 Add together the following three binary numbers and give your answer in binary.

[2 marks]

0 7	Describe the binary shift that would be used to divide a binary number by four.
	[1 mark]

0 8.4	Explain how a binary number can be multiplied by 8 by shifting bits.					

0 9	Add together the foll	lowing	g thr	ee bi	inary	nun	nbers	s and	d give	e your	answ	er in bii	nary. [2 marks]
		+		0	0	1	1 1 0	0	1	0			
10.1	Figure 1 shows a bi	t patte	ern.										
						Figu	ıre 1						
					00	11	00	11					
	State the result of ap in Figure 1 .	pplyin	gal	left b	inary	/ shit	ft of 1	two 1	o the	e bit p	attern	shown	[1 mark]
10.2	The decimal equival	ent of	the	bit p	oatte	rn sh	iown	in F	igur	e 1 is	51		
	State the result of ap in Figure 1 .	pplyin	g a l	left b	inary	/ shit	ft of c	one 1	to the	e bit p	attern	shown	
	Give your answer in	decir	mal.										[1 mark]

1 0.3	Which statement best describes where a single binary shift can be used?						
	Shade one lozenge.		[1 mark]				
	A Multiply or divide numbers by any even number.	0					
	B Multiply or divide numbers by any number.	0					
	C Multiply or divide numbers by any odd number.	0					
	D Multiply or divide numbers by powers of two.	0					